回溯算法
1. 2n皇后
问题描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,
使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。
问总共有多少种放法?n小于等于8。
输入格式
输入的第一行为一个整数n,表示棋盘的大小。
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
package 回溯算法;
import java.util.*;
/**
* 单皇后解法
*
* @author Bermuda
*
*/
class SingleQueen implements Runnable {
private static int n = 4;
private int[] array;
public SingleQueen() {
array = new int[n];
}
public SingleQueen(int[] array) {
SingleQueen.n = array.length;
this.array = new int[n];
}
@Override
public void run() {
queen(array);
}
public void queen(int[] array) {
Arrays.fill(array, -1);
int row = 0;
int count = 0;
while (row >= 0 && row < n) {
array[row]++;
while (array[row] < n && check(row, array)) {
array[row]++;
}
if (array[row] < n && row == n - 1) {
count++;
for (int i = 0; i < n; i++) {
System.out.println((i + 1) + "行:" + (array[i] + 1) + "列");
}
System.out.println("===============");
if (array[0] < n - 1) {
row = 0;
for (int i = 1; i < n; i++) {
array[i] = -1;
}
continue;
}
break;
}
if (array[row] < n && row < n - 1) {
row += 1;
} else {
array[row--] = -1;
}
}
System.out.println("单皇后一共有" + count + "种解!");
}
public boolean check(int row, int[] array) {
for (int perRow = 0; perRow < row; perRow++) {
if (array[perRow] == array[row] || Math.abs(perRow - row) == Math.abs(array[perRow] - array[row])) {
return true;
}
}
return false;
}
}
class DoubleQueen implements Runnable {
private static int n = 4;
private int count = 0;
private int[][] chessBoard;
private int[] whiteQueen;
private int[] blackQueen;
public DoubleQueen() {
chessBoard = new int[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(chessBoard[i], 1);
}
whiteQueen = new int[n];
blackQueen = new int[n];
}
public DoubleQueen(int n, int[][] chessBoard) {
DoubleQueen.n = n;
this.chessBoard = chessBoard;
this.whiteQueen = new int[n];
this.blackQueen = new int[n];
}
@Override
public void run() {
whiteQueen(whiteQueen);
}
public void whiteQueen(int[] array) {
Arrays.fill(array, -1);
int row = 0;
while (row >= 0 && row < n && array[row] < n) {
array[row]++;
while (array[row] < n && check(row, array)) {
array[row]++;
if (array[row] >= n) {
break;
} else if (chessBoard[row][array[row]] == 0) {
array[row]++;
}
}
if (array[row] >= n) {
} else if (chessBoard[row][array[row]] == 0) {
continue;
}
if (array[row] < n && row == n - 1) {
if (!blackQueen()) {
break;
}
for (int i = 0; i < n; i++) {
System.out.println((i + 1) + "行:" + (array[i] + 1) + "列");
}
System.out.println("*********************以上是白");
if (array[0] < n - 1) {
row = 0;
for (int i = 1; i < n; i++) {
array[i] = -1;
}
continue;
}
break;
}
if (array[row] < n && row < n - 1) {
row += 1;
} else {
array[row--] = -1;
}
}
System.out.println("2n皇后一共有" + count + "种解!");
return;
}
public boolean blackQueen() {
int[] array = blackQueen;
Arrays.fill(array, -1);
int row = 0;
while (row >= 0 && row < n) {
array[row]++;
while (array[row] < n && check(row, array) || array[row] == whiteQueen[row]) {
array[row]++;
if (array[row] >= n) {
break;
} else if (chessBoard[row][array[row]] == 0) {
array[row]++;
}
}
if (array[row] >= n) {
} else if (chessBoard[row][array[row]] == 0) {
continue;
}
if (array[row] < n && row == n - 1) {
count++;
for (int i = 0; i < n; i++) {
System.out.println((i + 1) + "行:" + (array[i] + 1) + "列");
}
System.out.println("===============以上是黑");
if (array[0] < n - 1) {
row = 0;
for (int i = 1; i < n; i++) {
array[i] = -1;
}
continue;
}
break;
}
if (array[row] < n && row < n - 1) {
row += 1;
} else {
array[row--] = -1;
}
}
return count > 0 ? true : false;
}
public boolean check(int row, int[] array) {
for (int perRow = 0; perRow < row; perRow++) {
if (array[perRow] == array[row] || Math.abs(perRow - row) == Math.abs(array[perRow] - array[row])) {
return true;
}
}
return false;
}
}
public class Step1 {
private static int n = 0;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
scanner.nextLine();
int[][] chessBoard = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
chessBoard[i][j] = scanner.nextInt();
}
}
// scanner.close();
// int[] array = new int[n];
// SingleQueen singleQueen = new SingleQueen();
// new Thread(singleQueen).start();
DoubleQueen doubleQueen = new DoubleQueen(n, chessBoard);
new Thread(doubleQueen).start();
}
}