回溯算法

1. 2n皇后

问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,
使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。
问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
package 回溯算法;

import java.util.*;

/**
 * 单皇后解法
 * 
 * @author Bermuda
 *
 */
class SingleQueen implements Runnable {

    private static int n = 4;
    private int[] array;

    public SingleQueen() {
        array = new int[n];
    }

    public SingleQueen(int[] array) {
        SingleQueen.n = array.length;
        this.array = new int[n];
    }

    @Override
    public void run() {
        queen(array);
    }

    public void queen(int[] array) {
        Arrays.fill(array, -1);
        int row = 0;
        int count = 0;
        while (row >= 0 && row < n) {
            array[row]++;
            while (array[row] < n && check(row, array)) {
                array[row]++;
            }
            if (array[row] < n && row == n - 1) {
                count++;
                for (int i = 0; i < n; i++) {
                    System.out.println((i + 1) + "行:" + (array[i] + 1) + "列");
                }
                System.out.println("===============");
                if (array[0] < n - 1) {
                    row = 0;
                    for (int i = 1; i < n; i++) {
                        array[i] = -1;
                    }
                    continue;
                }
                break;
            }
            if (array[row] < n && row < n - 1) {
                row += 1;
            } else {
                array[row--] = -1;
            }
        }
        System.out.println("单皇后一共有" + count + "种解!");
    }

    public boolean check(int row, int[] array) {
        for (int perRow = 0; perRow < row; perRow++) {
            if (array[perRow] == array[row] || Math.abs(perRow - row) == Math.abs(array[perRow] - array[row])) {
                return true;
            }
        }
        return false;
    }

}

class DoubleQueen implements Runnable {

    private static int n = 4;
    private int count = 0;
    private int[][] chessBoard;
    private int[] whiteQueen;
    private int[] blackQueen;

    public DoubleQueen() {
        chessBoard = new int[n][n];
        for (int i = 0; i < n; i++) {
            Arrays.fill(chessBoard[i], 1);
        }
        whiteQueen = new int[n];
        blackQueen = new int[n];
    }

    public DoubleQueen(int n, int[][] chessBoard) {
        DoubleQueen.n = n;
        this.chessBoard = chessBoard;
        this.whiteQueen = new int[n];
        this.blackQueen = new int[n];
    }

    @Override
    public void run() {
        whiteQueen(whiteQueen);
    }

    public void whiteQueen(int[] array) {
        Arrays.fill(array, -1);
        int row = 0;
        while (row >= 0 && row < n && array[row] < n) {
            array[row]++;
            while (array[row] < n && check(row, array)) {
                array[row]++;
                if (array[row] >= n) {
                    break;
                } else if (chessBoard[row][array[row]] == 0) {
                    array[row]++;
                }
            }
            if (array[row] >= n) {
            } else if (chessBoard[row][array[row]] == 0) {
                continue;
            }
            if (array[row] < n && row == n - 1) {
                if (!blackQueen()) {
                    break;
                }
                for (int i = 0; i < n; i++) {
                    System.out.println((i + 1) + "行:" + (array[i] + 1) + "列");
                }

                System.out.println("*********************以上是白");
                if (array[0] < n - 1) {
                    row = 0;
                    for (int i = 1; i < n; i++) {
                        array[i] = -1;
                    }
                    continue;
                }
                break;
            }
            if (array[row] < n && row < n - 1) {
                row += 1;
            } else {
                array[row--] = -1;
            }
        }
        System.out.println("2n皇后一共有" + count + "种解!");
        return;
    }

    public boolean blackQueen() {
        int[] array = blackQueen;
        Arrays.fill(array, -1);
        int row = 0;
        while (row >= 0 && row < n) {
            array[row]++;
            while (array[row] < n && check(row, array) || array[row] == whiteQueen[row]) {
                array[row]++;
                if (array[row] >= n) {
                    break;
                } else if (chessBoard[row][array[row]] == 0) {
                    array[row]++;
                }
            }
            if (array[row] >= n) {
            } else if (chessBoard[row][array[row]] == 0) {
                continue;
            }
            if (array[row] < n && row == n - 1) {
                count++;
                for (int i = 0; i < n; i++) {
                    System.out.println((i + 1) + "行:" + (array[i] + 1) + "列");
                }
                System.out.println("===============以上是黑");
                if (array[0] < n - 1) {
                    row = 0;
                    for (int i = 1; i < n; i++) {
                        array[i] = -1;
                    }
                    continue;
                }
                break;
            }
            if (array[row] < n && row < n - 1) {
                row += 1;
            } else {
                array[row--] = -1;
            }
        }
        return count > 0 ? true : false;
    }

    public boolean check(int row, int[] array) {
        for (int perRow = 0; perRow < row; perRow++) {
            if (array[perRow] == array[row] || Math.abs(perRow - row) == Math.abs(array[perRow] - array[row])) {
                return true;
            }
        }
        return false;
    }

}

public class Step1 {

    private static int n = 0;

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        scanner.nextLine();
        int[][] chessBoard = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                chessBoard[i][j] = scanner.nextInt();
            }
        }
        // scanner.close();
        // int[] array = new int[n];
        // SingleQueen singleQueen = new SingleQueen();
        // new Thread(singleQueen).start();
        DoubleQueen doubleQueen = new DoubleQueen(n, chessBoard);
        new Thread(doubleQueen).start();
    }

}
Copyright © qgao 2021-* all right reserved,powered by Gitbook该文件修订时间: 2022-07-08 12:24:46

results matching ""

    No results matching ""